

Муниципальное казённое общеобразовательное учреждение «Средняя общеобразовательная школа №3» (МКОУ «Средняя школа № 3»)

PACCMOTPEHA

на заседании методического объединения учителей биологии, химии, географии протокол от 27.08.2018 № 1

СОГЛАСОВАНО

Заместитель директора по УВР

И.Ю.Дорошина

WACA. WE 3

Рабочая программа является составной частью основной образовательной программы основного общего образования, утвержденной приказом от 30.08.2018 №107

Рабочая программа

по химии 7 – 9 классы

Срок реализации 3 года

Составитель программы: Мартьянова Светлана Анатольевна, учитель химии, I кв.категория

Пояснительная записка

Рабочая программа по химии разработана на основе авторской программы О.С.Габриеляна, соответствующей Федеральному компоненту Государственного стандарта общего образования и допущенной Министерством образования и науки Российской Федерации (О.С.Габриелян Программа курса химии для 8-11 классов общеобразовательных учреждений / О.С.Габриелян. — 2-е издание, переработанное и дополненное — М.: Дрофа, 2010.).

Рабочая программа по химии для 7 класса разработана в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования (с изменениями) на основе Примерной программы основного образования и авторской программы основного общего образования по химии О.С. Габриеляна

Для реализации Рабочей программы используется учебно-методический комплект О.С. Габриеляна «Химия. Пропедевтический курс».

На изучении химии в 7 классе отводится 34 часа в год, 1 час в неделю. Программа по химии 8 класса рассчитана на 102 часа: 3 часа в неделю. Из них — контрольных работ 5, практических работ — 9. Программа 9 класса рассчитана в соответствии с учебным планом школы на 68 часов: 2 часа в неделю. Из них: контрольных работ — 4, практических работ — 6.

Содержание программы направлено на освоение учащимися знаний, умений и навыков на базовом уровне, что соответствует Образовательной программе школы. Она включает все темы, предусмотренные федеральным компонентом государственного образовательного стандарта основного общего образования по химии и авторской программой учебного курса.

Рабочая программа построена на основе концентрического подхода, особенность которого состоит в вычленении дидактической единицы (в данной программе таковой является «химический элемент») и дальнейшем усложнении и расширении ее (здесь таковыми выступают формы существования (свободные атомы, простые и сложные вещества).

Из авторской программы 9 класса исключена часть учебного материала, который отсутствует в обязательном минимуме содержания основных образовательных программ для основной школы, также исключены некоторые демонстрационные и лабораторные опыты из-за недостатка времени на их выполнение при 2 часах в неделю, так как авторская программа предусматривает 2/3 часа в неделю.

Данная программа реализуется в учебнике «Химия. 9 класс» автора О.С. Габриеляна. - М.: Дрофа, 2010-2011.

Преобладающей формой текущего контроля выступает письменный (самостоятельные и контрольные работы) и устный опрос (собеседование).

Изучение химии основного общего образования направлено на достижение следующих целей:

- освоение важнейших знаний об основных понятиях и законах химии, химической символике;
- овладение умениями наблюдать химические явления, проводить химический эксперимент, производить расчеты на основе химических формул веществ и уравнений химических реакций;
- развитие познавательных интересов и интеллектуальных способностей в процессе проведения химического эксперимента, самостоятельного приобретения знаний в соответствии с возникающими жизненными потребностями;
- воспитание отношения к химии как к одному из фундаментальных компонентов естествознания и элементу общечеловеческой культуры;
- применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических

задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

Планируемые результаты освоения учебного предмета «Химия»

Учащийся 7 класса научится:

- определять роль различных веществ в природе и технике;
- объяснять роль веществ в их круговороте;
- приводить примеры химических процессов в природе;
- находить черты, свидетельствующие об общих признаках химических процессов и их различиях;
 - использовать химические знания в быту;
 - объяснять значение веществ в жизни и хозяйстве человека;
 - перечислять отличительные свойства химических веществ;
 - различать основные химические процессы;
 - определять основные классы неорганических веществ;
 - понимать смысл химических терминов;
- характеризовать методы химической науки (наблюдение, сравнение, эксперимент, измерение) и их роль в познании природы;
 - проводить химические опыты и эксперименты и объяснять их результаты;
 - различать опасные и безопасные вещества.

Учащийся 7 класса получит возможность научиться:

- характеризовать основные методы познания: наблюдение, измерение, эксперимент;
- описывать свойства твердых, жидких, газообразных веществ, выделяя их существенные признаки;
- раскрывать смысл основных химических понятий «атом», «молекула», «химический элемент», «простое вещество», «сложное вещество», «химическая реакция», используя знаковую систему химии;
 - определять состав веществ по их формулам;
 - грамотно обращаться с веществами в повседневной жизни.

Учащийся 8 класса научится:

- определять что такое изотопы, химическая связь, электроотрицательность, валентность, степень окисления;
 - определять химические понятия: моль, молярная масса, молярный объём;
- определять растворы, электролит и неэлектролит, электролитическая диссоциация;
 - определять окислитель и восстановитель, реакции окисления и восстановления;
 - называть химические элементы;
- объяснять физический смысл атомного номера химического элемента, номеров группы и периода, к которым принадлежит в периодической системе Д.И.Менделеева;
- объяснять закономерности изменения свойств элементов в пределах малых периодов и главных подгрупп;
- характеризовать элементы (от водорода до кальция) по их положению в периодической системе Д.И.Менделеева и особенностей строения их атомов;
- определять валентность химических элементов, определять степень окисления химических элементов, тип химической связи в соединениях, заряд иона;
- составлять схемы строения атомов первых 20 элементов периодической системы Д.И.Менделеева;
 - объяснять зависимость свойств веществ от их состава и строения;
- вычислять количество вещества, объём или массу по количеству вещества, объёму или массе реагентов или продуктов реакции;

- называть изученные вещества, определять принадлежность веществ к различным классам соединений;
 - объяснять сущность реакций ионного обмена;
 - характеризовать химические свойства изученных веществ;
 - объяснять зависимость свойств веществ от их состава и строения;
 - выполнять химический эксперимент по распознаванию веществ;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: безопасного обращения с веществами и материалами и экологически грамотного поведения в окружающей среде, школьной лаборатории и в быту.

Учащийся 8 класса получит возможность научиться:

- грамотно обращаться с веществами в повседневной жизни;
- осознавать необходимость соблюдения правил экологически безопасного поведения в окружающей природной среде;
- понимать смысл и необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.;
- использовать приобретённые ключевые компетентности при выполнении исследовательских проектов по изучению свойств, способов получения и распознавания веществ;
- развивать коммуникативную компетентность, используя средства устного и письменного общения, проявлять готовность к уважению иной точки зрения при обсуждении результатов выполненной работы;
- объективно оценивать информацию о веществах и химических процессах, критически относиться к псевдонаучной информации, недобросовестной рекламе, касающейся использования различных веществ.

Учащийся 9 класса научится:

- характеризовать основные методы познания: наблюдение, измерение, эксперимент;
- описывать свойства твердых, жидких, газообразных веществ, выделяя их существенные признаки;
- раскрывать смысл основных химических понятий «атом», «молекула», «химический элемент», «простое вещество», «сложное вещество», «валентность», «химическая реакция», используя знаковую систему химии;
 - различать химические и физические явления;
 - называть химические элементы;
 - определять состав веществ по их формулам;
 - называть признаки и условия протекания химических реакций;
- выявлять признаки, свидетельствующие о протекании химической реакции при выполнении химического опыта;
 - соблюдать правила безопасной работы при проведении опытов;
 - пользоваться лабораторным оборудованием и посудой;
 - вычислять относительную молекулярную и молярную массы веществ;
 - вычислять массовую долю химического элемента по формуле соединения;
- характеризовать физические и химические свойства простых веществ: кислорода и водорода;
 - вычислять массовую долю растворенного вещества в растворе;
 - приготовлять растворы с определенной массовой долей растворенного вещества.

Выпускник научится:

- характеризовать основные методы познания: наблюдение, измерение, эксперимент;
- описывать свойства твердых, жидких, газообразных веществ, выделяя их существенные признаки;

• раскрывать смысл основных химических понятий «атом», «молекула», «химический элемент», «простое вещество», «сложное вещество», «валентность», «химическая реакция», используя знаковую систему химии;

раскрывать смысл законов сохранения массы веществ, постоянства состава, атомно- молекулярной теории;

- различать химические и физические явления;
- называть химические элементы;
- определять состав веществ по их формулам;
- определять валентность атома элемента в соединениях;
- определять тип химических реакций;
- называть признаки и условия протекания химических реакций;
- •выявлять признаки, свидетельствующие о протекании химической реакции при выпол- нении химического опыта;
- •составлять формулы бинарных соединений;
- •составлять уравнения химических реакций; соблюдать правила безопасной работы при проведении опытов;
- пользоваться лабораторным оборудованием и посудой;
- вычислять относительную молекулярную и молярную массы веществ;
- вычислять массовую долю химического элемента по формуле соединения;
- вычислять количество, объем или массу вещества по количеству, объему, массе реагентов или продуктов реакции;
- характеризовать физические и химические свойства простых веществ: кислорода и водорода;
 - получать, собирать кислород и водород;
 - распознавать опытным путем газообразные вещества: кислород, водород;
 - раскрывать смысл закона Авогадро;
 - раскрывать смысл понятий «тепловой эффект реакции», «молярный объем»;
 - характеризовать физические и химические свойства воды;
 - раскрывать смысл понятия «раствор»;
 - вычислять массовую долю растворенного вещества в растворе;
 - приготовлять растворы с определенной массовой долей растворенного вещества;
 - называть соединения изученных классов неорганических веществ;
- характеризовать физические и химические свойства основных классов неорганических веществ: оксидов, кислот, оснований, солей;
 - определять принадлежность веществ к определенному классу соединений;
 - составлять формулы неорганических соединений изученных классов;
- проводить опыты, подтверждающие химические свойства изученных классов неорганических веществ;
- распознавать опытным путем растворы кислот и щелочей по изменению окраски индикатора;
 - характеризовать взаимосвязь между классами неорганических соединений;
 - раскрывать смысл Периодического закона Д.И. Менделеева;
- объяснять физический смысл атомного (порядкового) номера химического элемента, номеров группы и периода в периодической системе Д.И. Менделеева;
- объяснять закономерности изменения строения атомов, свойств элементов в пределах малых периодов и главных подгрупп;

характеризовать химические элементы (от водорода до кальция) на основе их положения в периодической системе Д.И. Менделеева и особенностей строения их атомов;

• составлять схемы строения атомов первых 20 элементов периодической системы Д.И. Менделеева;

раскрывать смысл понятий: «химическая связь», «электроотрицательность»;

- характеризовать зависимость физических свойств веществ от типа кристаллической решетки;
 - определять вид химической связи в неорганических соединениях;
- изображать схемы строения молекул веществ, образованных разными видами химических связей;
- раскрывать смысл понятий «ион», «катион», «анион», «электролиты», «неэлектролиты», «электролитическая диссоциация», «окислитель», «степень окисления» «восстановитель», «окисление», «восстановление»;
 - определять степень окисления атома элемента в соединении;
 - раскрывать смысл теории электролитической диссоциации;
 - составлять уравнения электролитической диссоциации кислот, щелочей, солей;
 - объяснять сущность процесса электролитической диссоциации и реакций ионного обмена;
 - составлять полные и сокращенные ионные уравнения реакции обмена;
 - определять возможность протекания реакций ионного обмена;
 - проводить реакции, подтверждающие качественный состав различных веществ;
 - определять окислитель и восстановитель;
 - составлять уравнения окислительно-восстановительных реакций;
 - называть факторы, влияющие на скорость химической реакции;
 - классифицировать химические реакции по различным признакам;
- характеризовать взаимосвязь между составом, строением и свойствами неметаллов;
- проводить опыты по получению, собиранию и изучению химических свойств газообразных веществ: углекислого газа, аммиака;
 - распознавать опытным путем газообразные вещества: углекислый газ и аммиак;
 - характеризовать взаимосвязь между составом, строением и свойствами металлов;
- называть органические вещества по их формуле: метан, этан, этилен, метанол, этанол, глицерин, уксусная кислота, аминоуксусная кислота, стеариновая кислота, олеиновая кислота, глюкоза;
- оценивать влияние химического загрязнения окружающей среды на организм человека;
 - грамотно обращаться с веществами в повседневной жизни;
- определять возможность протекания реакций некоторых представителей органических веществ с кислородом, водородом, металлами, основаниями, галогенами.

Выпускник получит возможность научиться:

- использовать приобретенные знания для экологически грамотного поведения в окружающей среде;
- использовать приобретенные ключевые компетенции при выполнении проектов и учебно-исследовательских задач по изучению свойств, способов получения и распознавания веществ;
 - объективно оценивать информацию о веществах и химических процессах;
- критически относиться к псевдонаучной информации, недобросовестной рекламе в средствах массовой информации;
- осознавать значение теоретических знаний по химии для практической деятельности человека;
- понимать необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др

Содержание учебного предмета

7 класс

Глава I. Химия в центре естествознания(11 часов)

Химия как часть естествознания. Предмет химии

Химия — часть естествознания. Взаимоотношения человека и окружающего мира. Предмет химии. Физические тела и вещества. Свойства веществ. Применение веществ на основе их свойств.

Наблюдение и эксперимент как методы изучения естествознания и химии

Наблюдение как основной метод познания окружающего мира. Условия проведения наблюдения.

Гипотеза. Эксперимент. Вывод. Строение пламени. Лаборатория и оборудование.

Моделирование

Модель, моделирование. Особенности моделирования в географии, физике, биологии. Модели в биологии. Муляжи. Модели в физике. Электрофорная машина. Географические модели. Химические модели: предметные (модели атома, молекул, химических и промышленных производств), знаковые, или символьные (символы элементов, формулы веществ, уравнения реакций).

Химические знаки и формулы

Химический элемент. Химические знаки. Их обозначение, произношение. Химические формулы веществ. Простые и сложные вещества. Индексы и коэффициенты. Качественный и количественный состав вещества.

Химия и физика

Универсальный характер положений молекулярно-кинетической теории. Понятия «атом», «молекула», ион». Строение вещества. Кристаллическое состояние вещества. Кристаллические решетки твердых веществ. Диффузия. Броуновское движение. Вещества молекулярного и немолекулярного строения.

Агрегатные состояния веществ

Понятие об агрегатном состоянии вещества. Физические и химические явления. Газообразные, жидкие и твердые вещества. Аморфные вещества.

Химия и география

Строение Земли: ядро, мантия, кора. Литосфера. Минералы и горные породы. Магматические и осадочные (неорганические и органические, в том числе и горючие) породы.

Химия и биология

Химический состав живой клетки: неорганические (вода и минеральные соли) и органические (белки, жиры, углеводы, витамины) вещества. Биологическая роль воды в живой клетке. Фотосинтез. Хлорофилл. Биологическое значение жиров, белков, эфирных масел, углеводов и витаминов для жизнедеятельности организмов.

Качественные реакции в химии

Качественные реакции. Распознавание веществ с помощью качественных реакций. Аналитический сигнал. Определяемое вещество и реактив на него.

ДЕМОНСТРАЦИИ

- Коллекция различных предметов или фотографий предметов из алюминия для иллюстрации идеи «свойства применение».
 - Учебное оборудование, используемое на уроках физики, биологии, географии и химии.
- Электрофорная машина в действии. Географические модели (глобус, карта). Биологические модели (муляжи органов и систем органов растений, животных и человека). Физические и химические модели атомов, молекул веществ и кристаллических решеток.

Объемные и шаростержневые модели воды, углекислого и сернистого газов, метана.

- Образцы твердых веществ кристаллического строения. Модели кристаллических решеток.
- Вода в трех агрегатных состояниях. Коллекция кристаллических и аморфных веществ и изделий из них.
 - Коллекция минералов (лазурит, корунд, халькопирит, флюорит, галит).
 - Коллекция горных пород (гранит, различные формы кальцита мел, мрамор, известняк).

Коллекция горючих ископаемых (нефть, каменный уголь, сланцы, торф).

ДЕМОНСТРАЦИОННЫЕ ЭКСПЕРИМЕНТЫ

- Научное наблюдение и его описание. Изучение строения пламени.
- Спиртовая экстракция хлорофилла из зеленых листьев растений.
- «Переливание» углекислого газа в стакан на уравновешенных весах.
- Качественная реакция на кислород. Качественная реакция на углекислый газ.

ЛАБОРАТОРНЫЕ ОПЫТЫ

- Распространение запаха одеколона, духов или дезодоранта как процесс диффузии.
 - Наблюдение броуновского движения частичек черной туши под микроскопом.
 - Диффузия перманганата калия в желатине.
 - Обнаружение эфирных масел в апельсиновой корочке.
 - Изучение гранита с помощью увеличительного стекла.
 - Определение содержания воды в растении.
 - Обнаружение масла в семенах подсолнечника и грецкого ореха.
 - Обнаружение крахмала в пшеничной муке.
- \bullet Взаимодействие аскорбиновой кислоты с иодом (определение витамина C в различных соках).
 - Продувание выдыхаемого воздуха через известковую воду
 - Обнаружение известковой воды среди различных веществ.

ДОМАШНИЕ ОПЫТЫ

- Изготовление моделей молекул химических веществ из пластилина.
- Диффузия сахара в воде.
- Опыты с пустой закрытой пластиковой бутылкой.
- Обнаружение крахмала в продуктах питания; яблоках.

ПРАКТИЧЕСКАЯ РАБОТА № 1

Знакомство с лабораторным оборудованием. Правила техники безопасности.

ПРАКТИЧЕСКАЯ РАБОТА № 2

Наблюдение за горящей свечой. Устройство и работа спиртовки.

Глава II. Математика в химии (10 часов)

Относительные атомная и молекулярная массы

Относительная атомная масса элемента. Молекулярная масса. Определение относительной атомной массы химических элементов по таблице Д. И. Менделеева. Нахождение относительной молекулярной массы по формуле вещества как суммы относительных атомных масс, составляющих вещество химических элементов.

Массовая доля элемента в сложном веществе

Понятие о массовой доле химического элемента (w) в сложном веществе и ее расчет по формуле вещества. Нахождение формулы вещества по значениям массовых долей образующих его элементов (для двухчасового изучения курса).

Чистые вещества и смеси Чистые вещества. Смеси. Гетерогенные и гомогенные смеси. Газообразные (воздух, природный газ), жидкие (нефть), твердые смеси (горные породы, кулинарные смеси и синтетические моющие средства).

Объемная доля газа в смеси

Определение объемной доли газа (ф) в смеси. Состав атмосферного воздуха и природного газа.

Расчет объема доли газа в смеси по его объему, и наоборот.

Массовая доля вещества в растворе

Массовая доля вещества (u>) в растворе. Концентрация. Растворитель и растворенное вещество. Расчет массы растворенного вещества по массе раствора и массовой доле растворенного вещества.

Массовая доля примесей

Понятие о чистом веществе и примеси. Массовая доля примеси (w) в образце исходного вещества. Основное вещество. Расчет массы основного вещества по массе вещества, содержащего определенную массовую долю примесей.

ДЕМОНСТРАЦИИ

- Коллекция различных видов мрамора и изделий (или иллюстраций изделий) из него.
 - Смесь речного и сахарного песка и их разделение.
 - Коллекция нефти и нефтепродуктов.
- Коллекция бытовых смесей (кулинарных смесей, СМС, шампуней, напитков и др.).
 - Диаграмма состава атмосферного воздуха. Диаграмма состава природного газа.
- Коллекция «Минералы и горные породы» (образцы веществ и материалов, содержащих определенную долю примесей).

домашние опыты

• Изучение состава некоторых бытовых и фармацевтических препаратов, содержащих определенную долю примесей.

ПРАКТИЧЕСКАЯ РАБОТА № 3

Приготовление раствора с заданной массовой долей растворенного вещества.

Глава III. Явления, происходящие с веществами (10 часов)

Разделение смесей

Способы разделения смесей и очистка веществ. Некоторые простейшие способы разделения смесей: просеивание, разделение смесей порошков железа и серы, отстаивание, декантация, центрифугирование, разделение с помощью делительной воронки, фильтрование. Фильтрование в лаборатории, быту и производстве. Понятие о фильтрате. Адсорбция. Понятие об адсорбции и адсорбентах. Активированный уголь как важнейший адсорбент. Устройство противогаза.

Дистилляция, или перегонка

Дистилляция (перегонка) как процесс выделения вещества из жидкой смеси. Дистиллиро-

ванная вода и области ее применения.

Кристаллизация или выпаривание. Кристаллизация и выпаривание в лаборатории (кристаллизаторы и фарфоровые чашки для выпаривания) и природе.

Перегонка нефти. Нефтепродукты. Фракционная перегонка жидкого воздуха.

Химические реакции. Условия протекания и прекращения химических реакций Химические реакции как процесс превращения одних веществ в другие. Условия протекания

и прекращения химических реакций. Соприкосновение (контакт) веществ, нагревание. Катализатор. Ингибитор. Управление реакциями горения.

Признаки химических реакций

Признаки химических реакций: изменение цвета, образование осадка, растворение полученного осадки, выделение газа, появление запаха, выделение или поглощение теплоты.

ДЕМОНСТРАЦИИ

- Фильтр Шотта. Воронка Бюхнера. Установка для фильтрования под вакуумом.
- Респираторные маски и марлевые повязки.
- Противогаз и его устройство.
- Коллекция «Нефть и нефтепродукты».

ДЕМОНСТРАЦИОННЫЕ ЭКСПЕРИМЕНТЫ

Разделение смеси порошка серы и железных опилок.

- Разделение смеси порошка серы и песка.
- Разделение смеси воды и растительного масла с помощью делительной воронки.
- Получение дистиллированной воды с помощью лабораторной установки для перегонки жидкостей.

- Разделение смеси перманганата и дихромата калия способом кристаллизации.
- Взаимодействие железных опилок и порошка серы при нагревании.
- Получение углекислого газа взаимодействием мрамора с кислотой и обнаружение его с помощью известковой воды.

«Каталитическое разложение пероксида водорода (катализатор - диоксид марганца (IV)).

- Обнаружение раствора щелочи с помощью индикатора.
- Взаимодействие раствора перманганата калия и раствора дихромата калия с раствором сульфита натрия.
 - Взаимодействие раствора перманганата калия с аскорбиновой кислотой.
- Взаимодействие хлорида железа с желтой кровяной солью и гидроксидом натрия.
 - Взаимодействие гидроксида железа (III) с раствором соляной кислоты.

ЛАБОРАТОРНЫЕ ОПЫТЫ

- Адсорбция кукурузными палочками паров пахучих веществ.
- Изучение устройства зажигалки и пламени.

ДОМАШНИЕ ОПЫТЫ

- Разделение смеси сухого молока и речного песка.
- Отстаивание взвеси порошка для чистки посуды в воде и ее декантация.
- Адсорбция активированным углем красящих веществ пепси-колы.
- Растворение в воде таблетки аспирина УПСА.

Приготовление известковой воды и опыты с ней.

• Изучение состава СМС.

ПРАКТИЧЕСКАЯ РАБОТА № 4

Выращивание кристаллов соли (домашний эксперимент).

ПРАКТИЧЕСКАЯ РАБОТА № 5

Очистка поваренной соли

ПРАКТИЧЕСКАЯ РАБОТА № 6

Изучение процесса коррозии железа (домашний эксперимент).

Глава IV. Рассказы по химии (3 часа)

Ученическая конференция

◆ Выдающиеся русские ученые-химики». О жизни и деятельности М. В. Ломоносова, Д. И. Менделеева, А. М. Бутлерова, других отечественных и зарубежных ученых (по выбору учащихся).

Конкурс сообщений учащихся

◆ Мое любимое химическое вещество». Об открытии, получении и значении выбранного химического вещества.

Конкурс ученических проектов (Посвящен изучению химических реакций)

8 класс

Введение (6 ч)

Химия — наука о веществах, их свойствах и превращениях.

Понятие о химическом элементе и формах его существования: свободных атомах, простых и сложных веществах.

Превращения веществ. Отличие химических реакций от физических явлений. Роль химии в жизни человека. Хемофилия и хемофобия.

Краткие сведения из истории возникновения и развития химии. Период алхимии. Понятие о философском камне. Химия в XVI в. Развитие химии на Руси. Роль отечественных ученых в становлении химической науки — работы М. В. Ломоносова, А. М. Бутлерова, Д. И. Менделеева.

Химическая символика. Знаки химических элементов и происхождение их названий. Химические формулы. Индексы и коэффициенты. Относительные атомная и молекулярная массы. Расчет массовой доли химического элемента по формуле вещества.

Периодическая система химических элементов Д. И. Менделеева, ее структура: малые и большие периоды, группы и подгруппы (главная и побочная). Периодическая система как справочное пособие для получения сведений о химических элементах.

Расчетные задачи. 1. Нахождение относительной молекулярной массы вещества по его химической формуле. 2. Вычисление массовой доли химического элемента в веществе по его формуле.

TEMA 1 **Атомы химических** элементов (13 ч)

Атомы как форма существования химических элементов. Основные сведения о строении атомов. Доказательства сложности строения атомов. Опыты Резерфорда. Планетарная модель строения атома.

Состав атомных ядер: протоны и нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса».

Изменение числа протонов в ядре атома — образование новых химических элементов.

Изменение числа нейтронов в ядре атома — образование изотопов. Современное определение понятия «химический элемент». Изотопы как разновидности атомов одного химического элемента.

Электроны. Строение электронных оболочек атомов химических элементов № 1—20 периодической системы Д. И. Менделеева. Понятие о завершенном и незавершенном электронном слое (энергетическом уровне).

Периодическая система химических элементов Д. И. Менделеева и строение атомов: физический смысл порядкового номера элемента, номера группы, номера периода.

Изменение числа электронов на внешнем электронном уровне атома химического элемента — образование положительных и отрицательных ионов. Ионы, образованные атомами металлов и неметаллов. Причины изменения металлических и неметаллических свойств в периодах и группах.

Образование бинарных соединений. Понятие об ионной связи. Схемы образования ионной связи.

Взаимодействие атомов химических элементов-неметаллов между собой — образование двухатомных молекул простых веществ. Ковалентная неполярная химическая связь. Электронные и структурные формулы.

Взаимодействие атомов химических элементов-неметаллов между собой — образование бинарных соединений неметаллов. Электроотрицательность. Понятие о ковалентной полярной связи.

Взаимодействие атомов химических элементов-металлов между собой — образование металлических кристаллов. Понятие о металлической связи.

Демонстрации. Модели атомов химических элементов. Периодическая система химических элементов Д. И. Менделеева.

ТЕМА 2 Простые вещества (9ч)

Положение металлов и неметаллов в периодической системе химических элементов Д. И. Менделеева. Важнейшие простые вещества — металлы: железо, алюминий, кальций, магний, натрий, калий. Общие физические свойства металлов.

Важнейшие простые вещества — неметаллы, образованные атомами кислорода, водорода, азота, серы, фосфора, углерода. Способность атомов химических элементов к образованию нескольких простых веществ — аллотропия. Аллотропные модификации кислорода, фосфора и олова. Металлические и неметаллические свойства простых веществ. Относительность деления простых веществ на металлы и неметаллы.

Постоянная Авогадро. Количество вещества. Моль. Молярная масса. Молярный объем газообразных веществ. Кратные единицы количества вещества — миллимоль и

киломоль, миллимолярная и киломолярная массы вещества, миллимолярный и киломолярный объемы газообразных веществ.

Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Расчетные задачи. 1. Вычисление молярной массы веществ по химическим формулам. 2. Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Демонстрации. Получение озона. Образцы белого и серого олова, белого и красного фосфора. Некоторые металлы и неметаллы количеством вещества 1 моль. Модель молярного объема газообразных веществ.

ТЕМА 3 Соединения химических элементов (16 ч)

Степень окисления. Определение степени окисления элементов по химической формуле соединения. Составление формул бинарных соединений, общий способ их называния.

Бинарные соединения неметаллов: оксиды, хлориды, сульфиды и др. их состав и названия. Составление их формул. Представители оксидов: вода, углекислый газ и негашеная известь. Представители летучих водородных соединений: хлороводород и аммиак.

Основания, их состав и названия. Растворимость оснований в воде. Таблица растворимости гидроксидов и солей в воде. Представители щелочей: гидроксиды натрия, калия и кальция. Понятие о качественных реакциях. Индикаторы. Изменение окраски индикаторов в щелочной среде.

Кислоты, их состав и названия. Классификация кислот. Представители кислот: серная, соляная и азотная. Изменение окраски индикаторов в кислотной среде.

Соли как производные кислот и оснований. Их состав и названия. Растворимость солей в воде. Представители солей: хлорид натрия, карбонат и фосфат кальция.

Аморфные и кристаллические вещества.

Межмолекулярные взаимодействия. Типы кристаллических решеток: ионная, атомная, молекулярная и металлическая. Зависимость свойств веществ от типов кристаллических решеток.

Вещества молекулярного и немолекулярного строения. Закон постоянства состава для веществ молекулярного строения.

Чистые вещества и смеси. Примеры жидких, твердых и газообразных смесей. Свойства чистых веществ и смесей. Их состав. Массовая и объемная доли компонента смеси. Расчеты, связанные с использованием понятия «доля».

Расчетные задачи. 1. Расчет массовой и объемной долей компонентов смеси веществ. 2. Вычисление массовой доли вещества в растворе по известной массе растворенного вещества и массе растворителя. 3. Вычисление массы растворяемого вещества и растворителя, необходимых для приготовления определенной массы раствора с известной массовой долей растворенного вещества.

Демонстрации. Образцы оксидов, кислот, оснований и солей. Модели кристаллических решеток хлорида натрия, алмаза, оксида углерода (IV). Взрыв смеси водорода с воздухом. Способы разделения смесей. Дистилляция воды.

Лабораторные опыты. 1. Знакомство с образцами веществ разных классов. 2. Разделение смесей.

ТЕМА 4 Изменения, происходящие с веществами (13 ч)

Понятие явлений как изменений, происходящих с веществами.

Явления, связанные с изменением кристаллического строения вещества при постоянном его составе, — физические явления. Физические явления в химии: дистилляция, кристаллизация, выпаривание и возгонка веществ, центрифугирование.

Явления, связанные с изменением состава вещества, — химические реакции. Признаки и условия протекания химических реакций. Понятие об экзо- и

эндотермических реакциях. Реакции горения как частный случай экзотермических реакций, протекающих с выделением света.

Закон сохранения массы веществ. Химические уравнения. Значение индексов и коэффициентов. Составление уравнений химических реакций.

Расчеты по химическим уравнениям. Решение задач на нахождение количества вещества, массы или объема продукта реакции по количеству вещества, массе или объему исходного вещества. Расчеты с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Реакции разложения. Понятие о скорости химических реакций. Катализаторы. Ферменты.

Реакции соединения. Каталитические и некаталитические реакции. Обратимые и необратимые реакции.

Реакции замещения. Электрохимический ряд напряжений металлов, его использование для прогнозирования возможности протекания реакций между металлами и растворами кислот. Реакции вытеснения одних металлов из растворов их солей другими металлами.

Реакции обмена. Реакции нейтрализации. Условия протекания реакций обмена в растворах до конца.

Типы химических реакций (по признаку «число и состав исходных веществ и продуктов реакции») на примере свойств воды. Реакция разложения — электролиз воды. Реакции соединения — взаимодействие воды с оксидами металлов и неметаллов. Понятие «гидроксиды». Реакции замещения — взаимодействие воды с щелочными и щелочноземельными металлами. Реакции обмена (на примере гидролиза сульфида алюминия и карбида кальция).

Расчетные задачи. 1. Вычисление по химическим уравнениям массы или количества вещества по известной массе или количеству вещества одного из вступающих в реакцию веществ или продуктов реакции. 2. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса исходного вещества, содержащего определенную долю примесей. 3. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса раствора и массовая доля растворенного вещества.

Демонстрации. Примеры физических явлений: а) плавление парафина; б) возгонка иода или бензойной кислоты; в) растворение перманганата калия; г) диффузия душистых веществ с горящей лампочки накаливания. Примеры химических явлений: а) горение магния, фосфора; б) взаимодействие соляной кислоты с мрамором или мелом; в) получение гидроксида меди (II); г) растворение полученного гидроксида в кислотах; д) взаимодействие оксида меди (II) с серной кислотой при нагревании; е) разложение перманганата калия; ж) взаимодействие разбавленных кислот с металлами; з) разложение пероксида водорода; и) электролиз воды.

Лабораторные опыты. 1. Сравнение скорости испарения воды и спирта по исчезновению их капель на фильтровальной бумаге. 2. Окисление меди в пламени спиртовки или горелки. 3. Помутнение известковой воды от выдыхаемого углекислого газа. 4. Получение углекислого газа взаимодействием соды и кислоты. 5. Замещение меди в растворе хлорида меди (II) железом.

ТЕМА 5 Практикум № 1

Простейшие операции с веществом (54)

1. Правила техники безопасности при работе в химическом кабинете. Приемы обращения с лабораторным оборудованием и нагревательными приборами. 2. Наблюдения за изменениями, происходящими с горящей свечой, и их описание. 3. Анализ почвы и воды. 4. Признаки химических реакций. 5.Приготовление раствора сахара и определение массовой доли его в растворе.

ТЕМА 6 Растворение. Растворы. Свойства растворов электролитов (26 ч)

Растворение как физико-химический процесс. Понятие о гидратах и кристаллогидратах. Растворимость. Кривые растворимости как модель зависимости растворимости твердых веществ от температуры. Насыщенные, ненасыщенные и пересыщенные растворы. Значение растворов для природы и сельского хозяйства.

Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциации электролитов с различным типом химической связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Ионные уравнения реакций. Условия протекания реакции обмена между электролитами до конца в свете ионных представлений.

Классификация ионов и их свойства.

Кислоты, их классификация. Диссоциация кислот и их свойства в свете теории электролитической диссоциации. Молекулярные и ионные уравнения реакций кислот. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов. Взаимодействие кислот с основаниями — реакция нейтрализации. Взаимодействие кислот с солями. Использование таблицы растворимости для характеристики химических свойств кислот.

Основания, их классификация. Диссоциация оснований и их свойства в свете теории электролитической диссоциации. Взаимодействие оснований с кислотами, кислотными оксидами и солями. Использование таблицы растворимости для характеристики химических свойств оснований. Разложение нерастворимых оснований при нагревании.

Соли, их классификация и диссоциация различных типов солей. Свойства солей в свете теории электролитической диссоциации. Взаимодействие солей с металлами, условия протекания этих реакций. Взаимодействие солей с кислотами, основаниями и солями. Использование таблицы растворимости для характеристики химических свойств солей.

Обобщение сведений об оксидах, их классификации и химических свойствах.

Генетические ряды металлов и неметаллов. Генетическая связь между классами неорганических веществ.

Окислительно-восстановительные реакции. Окислитель и восстановитель, окисление и восстановление.

Реакции ионного обмена и окислительно-восстановительные реакции. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Свойства простых веществ — металлов и неметаллов, кислот и солей в свете представлений об окислительно-восстановительных процессах.

Демонстрации. Испытание веществ и их растворов на электропроводность. Движение окрашенных ионов в электрическом поле. Зависимость электропроводности уксусной кислоты от концентрации. Взаимодействие цинка с серой, соляной кислотой, хлоридом меди (II). Горение магния. Взаимодействие хлорной и сероводородной воды.

Лабораторные опыты. 1. Реакции, характерные для растворов кислот (соляной или серной). 2. Реакции, характерные для растворов щелочей (гидроксидов натрия или калия). 3. Получение и свойства нерастворимого основания, например гидроксида меди (II). 4. Реакции, характерные для растворов солей (например, для хлорида меди (II). 5. Реакции, характерные для основных оксидов (например, для оксида кальция). 6. Реакции, характерные для кислотных оксидов (например, для углекислого газа).

ТЕМА 7 Практикум № 2

Свойства растворов электролитов (4 ч)

6. Ионные реакции. 7. Условия протекания химических реакций между растворами электролитов до конца.8. Свойства кислот, оснований, оксидов и солей. 9. Решение экспериментальных задач.

ТЕМА 8 Портретная галерея великих химиков (8 часов)

Повторение материала 8 класса

9 класс

Повторение основных вопросов курса 8 класса и введение в курс 9 класса (64)

Характеристика элемента по его положению в периодической системе химических элементов Д. И. Менделеева. Генетические ряды металла и неметалла.

Понятие о переходных элементах. Амфотерность. Генетический ряд переходного элемента.

Периодический закон и периодическая система химических элементов Д. И. Менделеева в свете учения о строении атома. Их значение.

Свойства оксидов, кислот, оснований и солей в свете теории электролитической диссоциации и процессов окисления-восстановления.

Лабораторный опыт. 1. Получение гидроксида цинка и исследование его свойств. **Тема 1 Металлы** (15 ч)

Положение металлов в периодической системе химических элементов Д. И. Менделеева. Металлическая кристаллическая решетка и металлическая химическая связь. Общие физические свойства металлов. Химические свойства металлов как восстановителей. Электрохимический ряд напряжений металлов и его использование для характеристики химических свойств конкретных металлов.

Сплавы, их свойства и значение.

Коррозия металлов и способы борьбы с ней.

Металлы в природе. Способы получения металлов: пиро -, гидро- и электрометаллургия.

Общая характеристика элементов главной подгруппы I группы. Общие способы их получения. Строение атомов. Щелочные металлы — простые вещества, их физические и химические свойства.

Важнейшие соединения щелочных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, сульфаты, нитраты), их свойства и применение в народном хозяйстве. Калийные удобрения.

Общая характеристика элементов главной подгруппы II группы. Строение атомов. Щелочноземельные металлы - простые вещества, их физические и химические свойства.

Важнейшие соединения щелочноземельных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, нитраты, сульфаты и фосфаты), их свойства и применение в народном хозяйстве.

Алюминий. Строение атома, физические и химические свойства простого вещества. Соединения алюминия — оксид и гидроксид, их амфотерный характер. Важнейшие соли алюминия. Применение алюминия и его соединений.

Железо. Строение атома, физические и химические свойства простого вещества.

Генетические ряды Fe^{2+} и Fe^{3+} . Качественные реакции на Fe^{2+} и Fe^{3+} . Важнейшие соли железа. Значение железа, его соединений и сплавов в природе и народном хозяйстве.

Демонстрации. Образцы щелочных и щелочноземельных металлов. Образцы сплавов. Взаимодействие натрия, лития и кальция с водой.

Взаимодействие натрия и магния с кислородом. Взаимодействие металлов с неметаллами. Получение гидроксидов железа (II) и (III).

Лабораторные опыты. 2. Ознакомление с образцами металлов. 3. Взаимодействие металлов с растворами кислот и солей. 4. Ознакомление с образцами природных соединений: а) натрия; б) кальция; в) алюминия; г) железа. 5. Получение гидроксида алюминия и его взаимодействие с растворами кислот и щелочей. 6. Качественные реакции на ионы Fe^{2+} и Fe^{3+} .

Тема 2

Практикум № 1

Свойства металлов и их соединений (34)

1. Осуществление цепочки химических превращений металлов.

- 2. Получение и свойства соединений металлов.
- 3. Решение экспериментальных задач на распознавание и получение веществ.

Тема 3

Неметаллы (23ч)

Общая характеристика неметаллов: положение в периодической системе Д. И. Менделеева, особенности строения атомов, электроотрицательность как мера «неметалличности», ряд электроотрицательности. Кристаллическое строение неметаллов — простых веществ. Аллотропия. Физические свойства неметаллов. Относительность понятий «металл», «неметалл».

Водород. Положение в периодической системе химических элементов Д. И. Менделеева. Строение атома и молекулы. Физические и химические свойства водорода, его получение и применение.

Общая характеристика галогенов. Строение атомов. Простые вещества, их физические и химические свойства. Основные соединения галогенов (галогеноводороды и галогениды), их свойства. Качественная реакция на хлорид-ион. Краткие сведения о хлоре, броме, фторе и иоде. Применение галогенов и их соединений в народном хозяйстве.

Кислород. Положение в периодической системе химических элементов Д.И.Менделеева. Строение атома и молекулы. Физические и химические свойства кислорода, его получение и применение.

Сера. Строение атома, аллотропия, свойства и применение ромбической серы.

Оксиды серы (IV) и (VI), их получение, свойства и применение. Сероводородная и сернистая кислоты.

Серная кислота и ее соли, их применение в народном хозяйстве. Качественная реакция на сульфат-ион.

Азот. Строение атома и молекулы, свойства простого вещества.

Аммиак, строение, свойства, получение и применение. Соли аммония, их свойства и применение. Оксиды азота (II) и (IV).

Азотная кислота, ее свойства и применение. Нитраты и нитриты, проблема их содержания в сельскохозяйственной продукции. Азотные удобрения.

 Φ о с ϕ о р . Строение атома, аллотропия, свойства белого и красного фосфора, их применение. Основные соединения: оксид фосфора (V), ортофосфорная кислота и фосфаты. Фосфорные удобрения.

Углерод. Строение атома, аллотропия, свойства аллотропных модификаций, применение.

Оксиды углерода (II) и (IV), их свойства и применение. Качественная реакция на углекислый газ. Карбонаты: кальцит, сода, поташ, их значение в природе и жизни человека. Качественная реакция на карбонат-ион.

К р е м н и й . Строение атома, кристаллический кремний, его свойства и применение. Оксид кремния (IV), его природные разновидности. Силикаты. Значение соединений кремния в живой и неживой природе.

Понятие о силикатной промышленности.

Демонстрации. Образцы галогенов — простых веществ. Взаимодействие галогенов с натрием, алюминием. Вытеснение хлором брома или иода из растворов их солей.

Взаимодействие серы с металлами, водородом и кислородом.

Взаимодействие концентрированной азотной кислоты с медью.

Поглощение углем растворенных веществ или газов. Восстановление меди из ее оксида углем. Образцы природных соединений хлора, серы, фосфора, углерода, кремния. Образцы важнейших для народного хозяйства сульфатов, нитратов, карбонатов, фосфатов. Образцы стекла, керамики, цемента.

Лабораторные опыты. 7. Качественная реакция на хлорид-ион. 8. Качественная реакция на сульфат-ион. 9. Распознавание солей аммония. 10. Получение углекислого газа

и его распознавание. 11. Качественная реакция на карбонат-ион. 12. Ознакомление с природными силикатами. 13. Ознакомление с продукцией силикатной промышленности.

Тема 4

Практикум № 2

Свойства неметаллов и их соединений

(3 u)

- 4. Решение экспериментальных задач по теме «Подгруппа кислорода».
- 5. Решение экспериментальных задач по теме «Подгруппы азота и углерода».
- 6. Получение, собирание и распознавание газов.

Тема 5

Органические соединения (10 ч)

Предмет органической химии. Вещества органические и неорганические, относительность понятия «органические вещества». Причины многообразия органических соединений. Химическое строение органических соединений. Молекулярные и структурные формулы органических веществ.

Метан и этан: строение молекул. Горение метана и этана. Дегидрирование этана. Применение метана.

Химическое строение молекулы этилена. Двойная связь. Взаимодействие этилена с водой. Реакции полимеризации этилена. Полиэтилен и его значение.

Понятие о предельных одноатомных спиртах на примерах метанола и этанола. Трехатомный спирт — глицерин.

Понятие об альдегидах на примере уксусного альдегида. Окисление альдегида в кислоту.

Одноосновные предельные карбоновые кислоты на примере уксусной кислоты. Ее свойства и применение. Стеариновая кислота как представитель жирных карбоновых кислот.

Реакции этерификации и понятие о сложных эфирах.

Жиры. Жиры как сложные эфиры глицерина и жирных кислот.

Понятие об аминокислотах. Реакции поликонденсации. Белки, их строение и биологическая роль.

Понятие об углеводах. Глюкоза, ее свойства и значение. Крахмал и целлюлоза (в сравнении), их биологическая роль.

Демонстрации. Модели молекул метана и других углеводородов. Взаимодействие этилена с бромной водой и раствором перманганата калия. Образцы этанола и глицерина. Качественная реакция на многоатомные спирты. Получение уксусно-этилового эфира. Омыление жира. Взаимодействие глюкозы с аммиачным раствором оксида серебра. Качественная реакция на крахмал. Доказательство наличия функциональных групп в растворах аминокислот. Горение белков (шерсти или птичьих перьев). Цветные реакции белков.

Лабораторные опыты. 14. Изготовление моделей молекул углеводородов. 15. Свойства глицерина. 16. Взаимодействие глюкозы с гидроксидом меди (II) без нагревания и при нагревании. 17. Взаимодействие крахмала с иодом.

Тема 6

Обобщение знаний по химии за курс основной школы (8ч)

Периодический закон и периодическая система химических элементов Д.И.Менделеева. Физический смысл порядкового номера элемента в периодической системе химических элементов Д. И. Менделеева, номеров периода и группы. Закономерности изменения свойств элементов и их соединений в периодах и группах в свете представлений о строении атомов элементов. Значение периодического закона.

Типы химических связей и типы кристаллических решеток. Взаимосвязь строения и свойств веществ.

Классификация химических реакций по различным признакам (число и состав реагирующих и образующихся веществ; тепловой эффект; использование катализатора; направление; изменение степеней окисления атомов).

Простые и сложные вещества. Металлы и неметаллы.

Генетическая связь между классами неорганических соединений. Генетические ряды металла, неметалла и переходного металла.

Оксиды, кислоты, основания и соли в свете теории электролитической диссоциации. Оксиды (основные, амфотерные и кислотные), гидроксиды (основания, амфотерные гидроксиды и кислоты) и соли: состав, классификация и общие химические свойства в свете теории электролитической диссоциации и представлений о процессах окисления-восстановления.

Окислительно-восстановительные реакции.

Тематическое планирование 7 класс (1 час в неделю – 34 часа)

Содержание материала	Кол-во часов
Глава I. Химия в центре естествознания	11
Глава II. Математика в химии	10
Глава III. Явления, происходящие с веществами	10
Глава IV. Рассказы по химии	3
Всего	34

Тематическое планирование 8 класс (3 часа в неделю – 102 часа)

No	Наименование	Всего	В том числе	
	темы/раздела	часов		
	-		Практических	Контрольных
			работ	работ
	Введение	6		
1	Атомы химических элементов.	13		1
2	Простые вещества.	9		1
3	Соединения химических элементов	16		1
4	Изменения, происходящие с	13		1
	веществами.			
5	Практикум №1.	5	5	
6	Растворение. Растворы. Свойства	26		1
	растворов электролитов.			
7	Практикум №2	4	4	
8	Портретная галерея великих химиков	8		
	(Повторение)			
	Резерв	2		
	Итого	102	9	5

Тематическое планирование 9 класс (2 часа в неделю – 68 часов)

	(2 часа в неделю – оо часов)					
No	Тема	Всего	В том числе		В том	числе
п/п		часов	практических работ	контрольных работ		
1.	Повторение основных вопросов курса 8 класса и введение в курс 9 класса	7		1		
2.	Тема 1. Металлы	14		1		
3.	Тема 2. Свойства металлов и их соединений	3	3			
4.	Тема 3. Неметаллы	23		1		
5.	Тема 4 . Свойства неметаллов и их соединений	3	3			
6.	Тема 5. Органические соединения	10				
7.	Тема 6 . Обобщение знаний по химии за курс основной школы	8		1		
	Итого:	68	6	4		